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Abstract

In the repeated prisoner’s dilemma there is no strategy that is evolutionarily stable, and a profusion 
of neutrally stable ones. But how stable is neutrally stable? We show that in repeated games with large 
enough continuation probabilities, where the stage game is characterized by a conflict between individual 
and collective interests, there is always a neutral mutant that can drift into a population that is playing an 
equilibrium, and create a selective advantage for a second mutant. The existence of stepping stone paths out 
of any equilibrium determines the dynamics in finite populations playing the repeated prisoner’s dilemma.
© 2015 Elsevier Inc. All rights reserved.
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“Everything changes, nothing remains the same”
Buddha

1. Introduction

Repeated games typically have many equilibria. But how stable are these equilibria? And 
are some equilibria perhaps more stable than others? In this paper we use refinements from 
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evolutionary game theory to determine how stable equilibria are, and to help understand the 
evolutionary dynamics in populations of individuals that are playing such games.

For the repeated prisoner’s dilemma we know that there is no pure strategy that is evolution-
arily stable (Selten and Hammerstein, 1984), and it is straightforward to extend that argument to 
non-trivial repeated games in general, and to mixed strategies with finite support. There are, on 
the other hand, very many neutrally stable strategies in the repeated prisoner’s dilemma (Bendor 
and Swistak, 1995, 1997, 1998). These NSS’es range from fully defecting to fully cooperative. 
Neutral stability is a weaker version of evolutionary stability, that does not imply asymptotic 
stability in the replicator dynamics. That, however, does not rule out that there might be a set of 
NSS’es that is evolutionarily stable.

In order to investigate whether or not there are such evolutionarily stable sets, and, more in 
general, to determine how stable these NSS’es are, we will use the concept of robustness against 
indirect invasions (RAII, van Veelen, 2012). RAII is less strict than ESS, because it allows for 
neutral mutants. It is also more strict than NSS, because it does not allow for neutral mutants 
that serve as a stepping stone for other mutants that have an actual selective advantage, once 
the first mutant has gained enough of a foothold in the population, for instance through neutral 
drift. Robustness against indirect invasions preserves a tight link with the replicator dynamics for 
infinite populations, as well as with stochastic, finite population dynamics of which the replicator 
dynamics are the large population limit (see Traulsen et al., 2005, 2006). If a strategy is RAII, 
then it is an element of an ES set (van Veelen, 2012; Balkenborg and Schlag, 2001), which is, as 
a set, asymptotically stable in the replicator dynamics (Thomas, 1985). Vice versa, if there is an 
ES set, then all of its elements are RAII. Moreover, the way robustness against indirect invasions 
deals with neutral mutants implies that it matches the qualitative equilibrium analysis typically 
applied to stochastic, finite population dynamics, in which neutral mutants play a pivotal role 
(Nowak, 2006).

It turns out that for repeated games in which the stage game shows a conflict between individ-
ual and collective interests – like the prisoner’s dilemma – no equilibrium is RAII, provided that 
the continuation probability is sufficiently high. In other words, any equilibrium can be upset by 
an at first harmless mutant, which serves as a stepping stone, or a springboard, for the invasion of 
a second mutant. Stepping stone paths with decreasing cooperation exist for all equilibria, unless 
there is no cooperation in equilibrium to begin with. Stepping stone paths with increasing coop-
eration exist for all equilibria that fall sufficiently short of full cooperation. What “sufficiently 
short” is, depends on the continuation probability.

Simulations show that not only do stepping stone paths out of any equilibrium exist for the 
repeated prisoner’s dilemma, evolution also finds them. With a mutation procedure that is not 
biased, and that allows for all finite state automata to be reached as mutants, we find that indirect 
invasions are indeed the driver of the dynamics. The population finds itself in equilibrium most 
of the time, with regular transitions from equilibrium to equilibrium that do indeed follow these 
stepping stone paths, both with rising and with declining levels of cooperation. The implications 
for the dynamics are further illustrated by comparing the repeated prisoner’s dilemma – which 
has no NSS’es that are RAII – to a repeated coordination game which does. We find that if the 
population size increases, the number of transitions out of equilibrium in the repeated coordina-
tion game quickly goes to zero, while in the repeated prisoner’s dilemma the population keeps 
moving from equilibrium to equilibrium regularly. Whether or not there are equilibria that are 
RAII therefore makes a huge difference for the evolutionary dynamics in repeated games.

Under very reasonable dynamics, equilibria of the repeated games we tend to look at when 
we study cooperation in repeated interactions, are therefore relatively unstable when we compare 
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them to games for which we do have equilibria that are RAII or even ESS. But even though noth-
ing is as stable as one would perhaps hope for, the typical transitions in and out of cooperation 
imply that reciprocity and cooperation will evolve, time and again, and to varying levels, and that 
they will also be undermined, over and over again. The non-existence of strategies that are RAII 
in the repeated prisoner’s dilemma also implies that if we study a restricted strategy space, and 
find one or more strategies to be stable, we can always make that stability result disappear by 
enlarging the strategy space to include the right stepping stones.

1.1. Definitions and results in the literature

The literature on evolution in repeated games has used a variety of definitions of evolutionary 
stability. At first glance it therefore seems to contain contradicting results as well as duplications. 
Axelrod and Hamilton (1981) consider the repeated prisoner’s dilemma, and claim that both 
Tit-for-tat and AllD are evolutionarily stable. Bendor and Swistak (1995) point out that they 
have only checked the first condition in Definition 1 below. This implies that they have shown 
that these strategies are symmetric Nash equilibria, but not that they are evolutionarily stable 
according to the now generally accepted definition by Maynard Smith and Price (1973). We first 
give the pure strategy version of that definition, applied to repeated games – which is definition
[2] in Bendor and Swistak (1995). Let S be a space of all pure strategies for the repeated game, 
and let � : S × S → R be the payoff function, where � (S,T ) is the payoff of a player playing 
strategy S against a player playing strategy T . The game is symmetric, in that the payoff of the 
opponent T in this encounter is given by � (T ,S).

Definition 1. (PURE ESS; MAYNARD SMITH & PRICE) A strategy S ∈ S is evolutionarily stable 
if both

�(S,S) ≥ �(T ,S) for all T and

if �(S,S) = �(T ,S) then �(S,T ) > �(T ,T ) for all T �= S

A strategy that is evolutionarily stable is asymptotically stable in the replicator dynamics, if 
the space of pure strategies is finite (Taylor and Jonker, 1978).

Considering the repeated prisoner’s dilemma, Selten and Hammerstein (1984) argue Tit-for-
tat is not an ESS, because AllC is a neutral mutant; both strategies get the same payoff, both 
against Tit-for-tat, and against AllC. Their argument is easily extended to imply that every pure 
strategy in every non-trivial repeated game has neutral mutants (where a trivial game would be 
one in which the stage game has a singleton strategy set). The reason is that for every equilibrium 
strategy S playing against itself, there is always an off-equilibrium path. On the off-equilibrium 
path a strategy can be changed without consequences for payoffs. This creates a mutant strategy 
T for which � (T ,S) = � (S,S) = � (T ,T ) = � (S,T ) and hence no strategy S can be ESS 
(see also Selten, 1983, for a discussion of evolutionary stability in extensive form games with 
finite trees).

Boyd and Lorberbaum (1987) also show that no pure ESS exists, but, as Bendor and Swistak
(1995) point out, they use a different definition of an ESS.

Definition 2. (PURE ESS; BOYD & LORBERBAUM) A strategy S ∈ S is evolutionarily stable if 
for all T both
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�(S,S) ≥ �(T ,S) and

if �(S,S) = �(T ,S) then �(S,U) ≥ �(T ,U) for all U

This definition is both less and more stringent than the pure strategy version of Maynard 
Smith & Price. It is less stringent, because the last inequality is non-strict. More importantly, it 
is also more stringent, because in the second half of the definition, S is required to not do worse 
than T , not just against T , but against all possible strategies U . Bendor and Swistak (1995) give 
a beautifully simple example of a 3 × 3 matrix game that shows that some strategies that are 
ESS’es, according to the standard definition, are not ESS’es according to the definition of Boyd 
& Lorberbaum. The latter definition therefore rules out equilibria that are relevant for dynamics. 
The literature has therefore converged on using Maynard Smith & Price’s definition.

Bendor and Swistak (1995) furthermore use a notion of stability – their definition [3] – that is 
now called neutral stability (see Maynard Smith, 1982; Weibull, 1995).

Definition 3. (PURE NSS) A strategy S is neutrally stable if both

�(S,S) ≥ �(T ,S) for all T and

if �(T ,T ) = �(S,T ) then �(T ,S) ≥ �(S,S)

A strategy that is neutrally stable is Lyapunov stable in the replicator dynamics (Thomas, 
1985; Bomze and Weibull, 1995), but not necessarily asymptotically stable.

Bendor and Swistak (1995) show that there are equilibria, ranging from fully defecting to 
fully cooperative, that are NSS.

Axelrod and Hamilton (1981), Selten and Hammerstein (1984), Boyd and Lorberbaum (1987)
and Bendor and Swistak (1995) focus on pure strategies, as do many other papers about evolu-
tion in repeated games – see for instance Fudenberg and Maskin (1990), Binmore and Samuelson
(1992),1 and Cooper (1996). The standard definition of an ESS however also allows for mixed 
strategies. We would like to do the same. We therefore equate mixed strategies with probability 
distributions over S . Section 4.1 shows how S can be endowed with a metric to make it a sepa-
rable metric space. Strategies P and Q will then be probability measures on (S,B) with Borel 
σ -field B.

Definition 4. (MIXED ESS; MAYNARD SMITH & PRICE) A strategy P is evolutionarily stable 
if both

�(P,P ) ≥ �(Q,P ) for all Q and

if �(P,P ) = �(Q,P ) then �(P,Q) > �(Q,Q) for all Q �= P

Below we state a straightforward generalization of Selten & Hammerstein’s argument, not 
only to non-trivial games in general, but also to finite mixtures of strategies. A finite mixture 
only allows for a finite number of equilibrium paths and hence there is always an infinite number 
of off-equilibrium paths left on which behavior can be changed without affecting payoffs. In 
terms of Definition 4, this implies that no strategy P can be ESS if P is a probability distribution 
that puts probability 1 on a finite number of strategies.

1 With the exception of Sections 8 and 9. They do however not use the standard mixed ESS, but define a polymorphous 
MESS, which is special version for lexicographic preferences, where complexity costs matter only if payoffs are equal.
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Proposition 5. In a non-trivial repeated game there is no finite mixture of strategies that is 
evolutionarily stable.

Proof. See Appendix A; this is a straightforward generalization of Selten and Hammerstein
(1984). �

Farrell and Ware (1989) show that no finite mixture can be ESS in the repeated prisoner’s 
dilemma. They, however, use the mixed equilibrium counterpart of Boyd & Lorberbaum’s defi-
nition.

For infinitely large strategy sets, the link between evolutionary stability and asymptotic stabil-
ity in replicator dynamics is a bit less straightforward than for finite sets of pure strategies (van 
Veelen and Spreij, 2009), but the standard definition is still more informative about the dynami-
cal behavior. Our point of departure is therefore that with non-trivial repeated games, there is no 
finite mixture that is evolutionarily stable, and that for the repeated prisoner’s dilemma there is a 
range of strategies that are neutrally stable, from fully defecting to fully cooperative, as shown in 
Bendor and Swistak (1995, 1997, 1998). The results in this paper will imply that none of these 
NSS’es are RAII, which indicates that they are relatively unstable, compared to NSS’es that are 
RAII.

Bendor and Swistak (1995, 1997, 1998) also find that the ‘basins of non-repulsion’ of more 
cooperative NSS’es are larger than those of less cooperative ones. This suggests that more coop-
erative NSS’es might also be more stable in reasonable evolutionary dynamics. Our finding that 
none of the NSS’es are RAII suggests that all NSS’es, cooperative and less cooperative ones, 
are, in a basic sense, equally unstable. In Section 2.2 we show why the size of the basin of non-
repulsion is less informative about the dynamics than the fact that all NSS’es are susceptible to 
indirect invasions, as the simulations also illustrate.

1.2. Other settings

Our setup allows for discounting, but has no complexity costs, no errors, and no population 
structure. These other elements are obviously important. Within classical game theory, complex-
ity costs are taken into account in Rubinstein (1986) and Abreu and Rubinstein (1988) – see also 
Kalai and Stanford (1988). Players there have lexicographic preferences, where complexity costs 
only matter in the event of payoff ties. Going from Nash equilibria to NSS’es or ESS’es with 
lexicographic preferences can be done in different ways (see Samuelson and Swinkels, 2003). 
These different ways lead to different results. All strategies that satisfy the lexicographic sta-
bility concept in Binmore and Samuelson (1992) are efficient, while AllD is the only strategy 
that survives refinement in Volij (2002). Rather than having lexicographic preferences, Cooper
(1996) considers repeated games with (small) complexity costs, and proves that there are NSS’es 
with levels of cooperation that range from fully defecting to fully cooperative. In van Veelen 
and García (2012) we extend Cooper’s result from the case without discounting to the case with 
discounting. Moreover, with small, but positive complexity costs, AllD is an ESS, and even has 
a uniform invasion barrier, while none of the cooperative equilibria are RAII. These cooperative 
equilibria therefore are less stable than AllD.

Without complexity costs, the results from this paper would apply, and we would have a range 
of equally unstable NSS’es. Choosing ever smaller complexity costs for a fixed population size 
brings the dynamics ever closer to what they would be without complexity costs. Choosing ever 
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larger population sizes for a fixed complexity cost brings the dynamics ever closer to what the 
prediction with complexity costs suggests (van Veelen and García, 2012, see also Schlag, 1993).

The importance of mistakes is highlighted by, among others, May (1987), Hirshleifer and Coll
(1988), Fudenberg and Maskin (1990), Nowak and Sigmund (1990, 1992), Kim (1994), Miller
(1996), and Axelrod (1997). The approach in Fudenberg and Maskin (1990) is also lexicographic; 
payoffs in the presence of n mistakes are of lower-order importance than payoffs in the presence 
of n − 1 mistakes. For the repeated prisoner’s dilemma, their results imply that equilibria must 
be fully cooperative in order to satisfy their equilibrium requirement.

In van Veelen et al. (2012) we combine repetition with population structure.2 There we con-
sider repeated prisoner’s dilemmas with “equal gains from switching” (which means that the 
game can be parametrized with parameters for costs and benefits only; see Nowak and Sigmund, 
1990) and pure equilibria only. Here we consider pure equilibria in general repeated games (The-
orems 7 and 8) and finite mixtures in general prisoner’s dilemmas (Theorems 10 and 11), all in 
well-mixed populations, or, in other words, without population structure. The simulation pro-
gram used in van Veelen et al. (2012) is the same as the program we use here, but then extended 
with population structure.

Evolutionary stability in the finitely repeated prisoner’s dilemma is considered in Cressman
(1996). The relevance of backward induction in the finitely repeated case implies that the com-
plications there are rather different from the infinitely repeated case that we consider.

The proofs of Theorems 8 and 11 use an argument that is similar to the “secret handshake” 
argument in Robson (1990); see also Fudenberg and Maskin (1990).

2. Preliminaries

2.1. Robustness against indirect invasions

With no ESS and many NSS’es, a natural question to ask is exactly how stable or unstable 
those NSS’es are. As the only difference between the definitions of an ESS and an NSS is that 
the latter allows for invasions by neutral mutants, while the former does not, the question then 
becomes how much harm these neutral mutants can do.

If we think for example of the repeated prisoner’s dilemma and the strategy Tit-for-tat, then it 
is clear that the worst enemy to cooperation is not AllD, but a succession of first AllC and then 
AllD. Tit-for-tat can easily resist an invasion of AllD, but not of AllC, which is a neutral mutant 
of Tit-for-tat. If AllC attains a high enough share of the population by random drift, then AllD 
gets a strict advantage and can invade the population (see Fig. 1).

In order to distinguish between neutral mutants that do and neutral mutants that do not serve 
as a springboard for other mutants, we use the concept of robustness against indirect invasions 
(van Veelen, 2012). For a strategy to be robust against indirect invasions (RAII) it must not only 
be an NSS, but there must also not be a sequence of neutral mutants that open the door for 
each other, one after another, until some mutant strategy has an actual selective advantage. We 
reproduce the definition below. As a preparation, three sets are defined for any strategy P : the 
set of (evolutionary) worse, equal and better performers against P .

SW (P ) = {Q | �(Q,P ) < �(P,P ) or
( �(Q,P ) = �(P,P ) and �(Q,Q) < �(P,Q))}

2 van Veelen et al. (2012) is a follow-up on this paper, but published before it.
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Fig. 1. An indirect invasion with decreasing cooperation. The simplex shows the replicator dynamics in the normal form 
game generated by AllC, AllD, and TFT , for δ = 3

4 . AllC is a neutral mutant of TFT , and AllD can directly invade AllC.

SE (P ) = {Q | �(Q,P ) = �(P,P ) and �(Q,Q) = �(P,Q)}
SB (P ) = {Q | �(Q,P ) > �(P,P ) or

( �(Q,P ) = �(P,P ) and �(Q,Q) > �(P,Q))}
With the sets of worse, better and equal performers at hand, we can restate the definitions of 

an NSS and an ESS in a shorter way. A strategy P is an NSS if SB (P ) = ∅ and a strategy P is 
an ESS if SB (P ) = ∅ and SE (P ) = {P }. These sets also help define robustness against indirect 
invasions.

Definition 6. A strategy P is robust against indirect invasions (RAII) if

(1) SB (P ) =∅ and

(2) �Q1, . . . , Qn, n ≥ 2, such that 

⎧⎨
⎩

Q1 ∈ SE (P )

Qi ∈ SE

(
Qi−1

)
, 2 ≤ i ≤ n − 1

Qn ∈ SB

(
Qn−1

)
If a strategy is RAII, then it gives us a set of strategies that is asymptotically stable in the 

replicator dynamics. van Veelen (2012) uses Theorem 3 in Balkenborg and Schlag (2001) to show 
that if P is RAII, then this strategy, together with its neutral mutants, and the neutral mutants of 
the neutral mutants, and so on, form a (minimal) ES-set. From Thomas (1985) we furthermore 
know that ES-sets are asymptotically stable in the replicator dynamics. The converse is also true; 
if X is an ES-set, and P ∈ X, then P is RAII.

The stepping stones that would make a strategy not RAII are not to be confused with the 
stepping stones that play a role in what is called step-by-step evolution in Ellison (2000). There 
step-by-step evolution can take the population from one ESS to the basin of attraction of another 
one through a sequence of population states, all of which might also be ESS’es. These steps 
will be relevant, if noise is relatively unlikely to get a population out of one ESS directly into 
the basin of attraction of another, compared to getting it to the same ESS through a sequence 
of intermediate ESS’es. Each step nonetheless may require a mutant that at low frequency is at 
an actual disadvantage. If we find that an equilibrium is not RAII, on the other hand, all that is 
required to leave it is a sequence of neutral mutants and a mutant with an actual advantage taking 
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Fig. 2. The minimal stabilizing frequencies for pure strategies 1 and 3.

over the population. That implies that such an equilibrium is far more unstable than an ESS is, 
because leaving an ESS will always have to involve noise temporarily overwhelming the force 
of selection (see also Kandori et al., 1993; Young, 1998; Sandholm and Staudigl, 2015).

2.2. Minimal stabilizing frequencies and p-dominance

Bendor and Swistak (1995, 1997) showed that there is a range of NSS’es for the repeated 
prisoner’s dilemma (Theorem 4). This will be our point of departure. They also show that fully 
cooperative, retaliating strategies have larger basins of non-repulsion than nasty ones, that never 
cooperate first (Theorems 5 and 6). These results concern “minimal stabilizing frequencies”, 
and how these depend on the continuation probability. The interpretation of these theorems is 
that, because of their larger basin of non-repulsion, cooperative equilibria are easier to obtain, 
and harder to disrupt than defecting ones. This interpretation rests on the assumption that the 
robustness of an equilibrium can be determined by looking at its minimal stabilizing frequency.

In order to illustrate that robustness in reasonable stochastic dynamics does not have to go 
hand in hand with a low minimal stabilizing frequency, we can look at a 3 × 3 matrix game 
example.⎡

⎣ 1 1 1
1 1 1

−1 1 2

⎤
⎦

For this game, the minimal stabilizing frequencies of strategies 1 and 3 are 1/3 and 2/3, 
respectively.3 If xi denotes the share of pure strategy i, then π

(
e1, x

) = π
(
e2, x

) = 1 and 
π

(
e1, x

) = 1 − 2x1 + x3. That implies that msf1 = 1/3 is both the lowest share for which the 
payoff of pure strategy 1 against x is at least as large as any other strategy present in the popu-
lation if x1 > msf1, and the lowest share for which the payoff of pure strategy 1 against x is at 
least as large as the average, under the same condition. Similarly, msf3 = 2/3 (see also Fig. 2).

3 The minimal stabilizing frequency is not formally defined in Bendor and Swistak (1995, 1997), but the description 
there leaves little room for ambiguity in this example.
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Strategy 1 therefore has a lower minimal stabilizing frequency than strategy 3, and it has a 
larger basin of non-repulsion. The interpretation in Bendor and Swistak (1995, 1997) would then 
imply that strategy 1 is more robust than strategy 3. That, however, is not the case. Strategy 1 is 
not RAII, while strategy 3 is, and in many reasonable stochastic dynamics, it is strategy 1 that is 
left much more easily than strategy 3. This is caused by the availability of the indirect invasion, 
out of 1, through 2, and then to 3, while strategy 3 does not have a similar stepping stone path out.

Also with repeated prisoner’s dilemmas, we will see that the equilibria are left through indirect 
invasions, and not over the edges that determine how large the minimal stabilizing frequency is. 
Having a lower minimal stabilizing frequency therefore is no guarantee that a strategy is also 
more robust in the dynamics.

Although stabilizing frequencies are not formally defined in Bendor and Swistak (1995,
1997), its application in these papers would be consistent with a non-strict version of 
p-dominance (Morris et al., 1995). A pure strategy in a symmetric game with finitely many 
pure strategies is p-dominant if it is the unique best response when it is played by at least a 
proportion p of the population. The application of stabilizing frequencies in Bendor and Swistak 
(1995, 1997) suggests that the existence of alternative best responses at a given frequency does 
not prevent that frequency from being labelled stabilizing. In other words, a strategy does not 
have to do strictly better than other strategies at frequencies below a threshold, in order for that 
threshold to qualify as a stabilizing frequency, whereas it does have to do strictly better than all 
other strategies at frequency p, or larger, in order for this strategy to be called p-dominant.

Comparing basins of attraction by looking at p-dominance can be useful for describing dy-
namic behavior; see for instance Ellison (2000), Sandholm (2001), and Oyama et al. (2015). The 
example above illustrates why slightly weaker, but similar results could not be derived using a 
non-strict version of p-dominance.

2.3. Repeated games

The example above with AllC, AllD and Tit-for-tat shows that in the repeated prisoner’s 
dilemma Tit-for-tat is not RAII. In Section 3 we will see that it is not just Tit-for-tat, and not 
just the repeated prisoner’s dilemma. Theorem 7 implies that any equilibrium in which actions 
are played that are not also equilibria of the stage game can be undermined by a succession of 
two mutations. Theorem 8 states that if there are possible gains from alternative courses of ac-
tion, and the probability of continuation is sufficiently high, then also a stepping stone route into 
more cooperation exists. Together they imply that for instance in repeated prisoner’s dilemmas, 
no equilibrium is RAII, if the continuation probability is high enough. Both theorems come in 
a pure strategy version for general repeated games (Theorems 7 and 8) and a mixed strategy 
version for repeated prisoner’s dilemmas (Theorems 10 and 11).

We start with a few formal definitions. Consider a symmetric one-shot 2-player game g char-
acterized by a set of players I = {1,2}, an action space A, equal for both players, and a payoff 
function π : A × A → R. Using a discount factor δ ∈ (0,1), interpreted as a continuation prob-
ability, this one-shot game is turned into a repeated one, which will be called � (δ). A history 
at time t is a list of the actions played up to and including time t − 1, where an empty pair of 
brackets is used to denote the history ‘no history’. If at,i is the action played by player i at time t , 
then these histories are:

h1 = ()

ht = ((
a1,1, a1,2

)
, . . . ,

(
at−1,1, at−1,2

))
, t = 2,3, . . .
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Sometimes we will also write 
(
ht ,

(
at,1, at,2

))
for a history ht+1. The set of possible histories at 

time t is:

H1 = {h1}

Ht =
t−1∏
i=1

(A × A) t = 2,3, . . .

and the set of all possible histories is:

H =
∞⋃
t=1

Ht .

A pure strategy is a function that maps histories to the action space; S : H → A. For two strate-
gies, say S and T , the course of actions is determined by recursion; all actions at all stages are 
determined by the initiation

h
S,T
1 = (), h

T ,S
1 = ()

and the recursion step for t = 1, 2, . . .

a
S,T
t =

(
S

(
h

S,T
t

)
, T

(
h

T,S
t

))
, a

T ,S
t =

(
T

(
h

T,S
t

)
, S

(
h

S,T
t

))
h

S,T
t+1 =

(
h

S,T
t , a

S,T
t

)
, h

T ,S
t+1 =

(
h

T,S
t , a

T ,S
t

)
For 0 ≤ δ < 1 the discounted, normalized payoffs to (a player that uses) strategy S against strat-
egy T is given by:

�(S,T ) = (1 − δ)

∞∑
t=1

δt−1π
(
a

S,T
t

)

3. Stepping stones in either direction

With these definitions, we can prove the first theorem. Note that strategies here are pure, 
and that we write that S is an equilibrium strategy, which is short for (S,S) being a symmetric 
Nash equilibrium of the game � (δ). We do not imply or require that the equilibrium is subgame 
perfect.

Theorem 7. Let S be a strategy in the game � (δ) and let there be a time τ at which aS,S
τ is not 

an equilibrium of the stage game. Then S is not RAII.

Proof. Assume that S is an equilibrium (if it is not, it is trivially not RAII). Let T be the 
strategy that equals S for all histories, except for those that are elements of the set Ĥ ={
ht | t > τ, aτ,2 ∈ arg maxa∈A π

(
a,S

(
hS,S

τ

))}
. These histories only occur off the equilibrium 

path, since it is assumed that players playing S against each other do not play an equilib-

rium of the stage game at time τ . For those histories ht ∈ Ĥ we take T (ht ) = S
(
h

S,S
t

)
. 

Obviously, the paths of T against S, T against T , S against S and S against T are all the 
same; hT,S

t = h
T,T
t = h

S,S
t = h

S,T
t ∀ t . Consequently the corresponding payoffs are also equal; 

� (T ,S) = � (S,S) = � (T ,T ) = � (S,T ).
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Now let U be the strategy that equals S, except after hS,S
τ , for which we take U

(
hS,S

τ

) ∈
arg maxa∈A π

(
a,S

(
hS,S

τ

))
, and except after histories that are elements of the set H̃ ={

ht | t > τ, aτ,1 ∈ arg maxa∈A π
(
a,S

(
hS,S

τ

))}
, for which we take U (ht ) = S

(
h

S,S
t

)
, ht ∈ H̃ .

It is obvious that � (U,S) ≤ � (S,S), for S is an equilibrium, and it is also clear that 
� (U,T ) > � (T ,T ) = � (S,T ), because U improves itself at time τ without being punished 
by T . As � (U,T ) > � (T ,T ), while � (S,S) = � (T ,S) and � (S,T ) = � (T ,T ), S is not 
RAII.

Note that � (U,T ) > � (T ,T ) = � (S,S) ≥ � (U,S), and therefore that T �= S. In other 
words, if T = S, then U does strictly better against S than S itself and that contradicts S being 
an equilibrium. �

This theorem indicates that as soon as there are equilibrium actions that must be upheld by 
the threat of punishment, then there are mutants that do not punish, and subsequently there are 
other mutants that take advantage of the first mutant not punishing.

The proof constructs only one way out of equilibrium. While this particular stepping stone 
path changes behavior for histories that are elements of rather moderate sets Ĥ and H̃ , other 
ways out of equilibrium may come with changes on larger, and maybe even more natural sets of 
histories, as for instance the example in Fig. 1 shows. But what the theorem shows is that if there 
is cooperation in equilibrium, at least the existence of an indirect way out is guaranteed.

While the reference points in Theorem 7 are the equilibria of the one-shot game, we will now 
focus on departures from the other extreme: the maximal feasible symmetric payoffs. Therefore 
we define πmax = maxa∈A π (a, a) and amax ∈ arg maxa∈A π (a, a). Note that amax is an action, 
while aS,S

τ = (
S

(
hS,S

τ

)
, S

(
hS,S

τ

))
is an action profile. The following theorem states that if there is 

a point in the course of play of an equilibrium strategy at which the costs of unilaterally initiating 
cooperation could be offset by future gains from (increased) cooperation, then the strategy is not 
RAII. The proof uses a “secret handshake” argument, as introduced by Robson (1990). Because 
there are no separate signals here, the handshake will have to consist of a move in the repeated 
game itself (see also Fudenberg and Maskin, 1990). This implies that one single mutant, that 
both has the signal, and reacts to it by increased cooperation, can typically not invade equilibria. 
What is needed is a sequence of two mutations, where the first one develops the required reaction 
to the handshake, and the second one develops the handshake itself (see also Fig. 3).

Theorem 8. Let S be a strategy in the game � (δ) and let there be a time τ , for which the 
following hold:

1. π
(
aS,S
τ

) − π
(
amax, S

(
hS,S

τ

))
<

∞∑
t=τ+1

δt−τ
(
πmax − π

(
a

S,S
t

))
.

2. amax �= S
(
hS,S

τ

)
Then S is not RAII.

Proof. Assume that S is an equilibrium (if it is not, it is trivially not RAII). Let T be 
the strategy that equals S for all histories, except for those that are elements of the set 
Ĥ = {

ht | t > τ, au,2 = amax, u ≥ τ
}
. These histories only occur off the equilibrium path, as 

it is assumed that amax �= S
(
hS,S

τ

)
. For those histories ht ∈ Ĥ we take T (ht ) = amax. Ob-

viously, the paths of T against S, T against T , S against S and S against T are all the 



172 J. García, M. van Veelen / Journal of Economic Theory 161 (2016) 161–189
same; hT,S
t = h

T,T
t = h

S,S
t = h

S,T
t ∀ t . Consequently the corresponding payoffs are also equal; 

� (T ,S) = � (S,S) = � (T ,T ) = � (S,T ).
Now let U be the strategy that equals S, except after the history hS,S

τ , for which we choose 
U

(
hS,S

τ

) = amax and except after histories that are elements of the set H̃ = {
ht | t > τ,

aτ,1 = amax and au,2 = amax, u > τ
}
, for which we take U (ht ) = amax, ht ∈ H̃ .

It is obvious that � (U,S) ≤ � (S,S), for S is an equilibrium, and it is also clear that 
� (U,T ) > � (T ,T ) = � (S,T ), because that follows directly from the first requirement of 
the theorem. As � (U,T ) > � (T ,T ), while � (S,S) = � (T ,S) and � (S,T ) = � (T ,T ), S is 
not RAII.

As in the proof of Theorem 7, S being an equilibrium implies that T �= S. �
The requirements in this theorem are slightly less simple to check for than those in Theorem 7, 

but when translated to prisoner’s dilemmas, it turns out to imply something that is relatively easy 
to handle. The next corollary states that for repeated prisoner’s dilemmas, all symmetric equi-
libria with payoffs less than π (C,C) − (1 − δ) [π (C,C) − π (C,D)] are not RAII. It therefore 
implies that for any strategy S with discounted, normalized payoffs � (S,S) smaller than the 
efficient symmetric payoff π (C,C), there is a δ ∈ (0,1) such that S is indirectly invadable for 
all δ ∈ (

δ,1
)
.

Corollary 9. In a repeated prisoner’s dilemma, all strategies S with � (S,S) < π (C,C) −
(1 − δ) [π (C,C) − π (C,D)] are not RAII.

Proof. First realize that S is π (C,C) − � (S,S) short from full, symmetric efficiency. Then 
choose as time τ in Theorem 8 the first period that S plays defect. The second requirement of the 
same theorem is then automatically fulfilled.

The following can then be derived

�(S,S) < π (C,C) − (1 − δ) (π (C,C) − π (C,D)) ⇒
�(S,S) < π (C,C) − (1 − δ) δτ (π (C,C) − π (C,D)) ⇔
π (D,D) − π (C,D) <

1

(1 − δ) δτ
[π (C,C) − �(S,S)] − [π (C,C) − π (D,D)] ⇔

π
(
aS,S
τ

)
− π

(
amax, S

(
h

S,S
τ−1

))
<

∞∑
t=τ

δt−τ
(
πmax − π

(
a

S,S
t

))
−

(
πmax − π

(
aS,S
τ

))
This satisfies the first requirement of Theorem 8. �
Again, the proof of Theorem 8 only gives one stepping stone route out of equilibrium, but 

there may be lots of ways in which successive mutants can throw an equilibrium off balance and 
increase the level of cooperation.

Together, Theorems 7 and 8 imply that in games with a conflict between individual and col-
lective interests, like the prisoner’s dilemma, there is no strategy that is RAII, provided that δ is 
sufficiently high. For many equilibria there will both be stepping stone paths out with increas-
ing and with decreasing cooperation. If the δ is not sufficiently high, and there is a strategy that 
is RAII, then Theorem 7 still implies that this strategy cannot feature any cooperation. For the 
repeated prisoner’s dilemma that implies that if there is a strategy that is RAII, it can only be 
AllD.
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Fig. 3. An indirect invasion with increasing cooperation. The simplex shows the replicator dynamics in the normal form 
game generated by AllD, Suspicious TitForTat (STFT), and Cooperate TitForTat (CTFT), for δ = 3

4 . STFT only differs 
from regular TFT in that its initial state is the defecting one, and it is a neutral mutant to AllD. CTFT cooperates on the 
first two moves and then imitates the opponent’s previous action, and it can directly invade STFT .

3.1. Mixed strategies

In evolutionary as well as in standard game theory, equilibrium concepts usually allow for 
mixed strategies. While the standard setting of symmetric 2-person bi-matrix games (see Weibull, 
1995) naturally comes with definitions in terms of mixed strategies, the literature on repeated 
games is much more focused on pure equilibria (with exceptions such as for instance Section 8 
and 9 in Binmore and Samuelson, 1992). It seems, however, that it would be natural to include 
mixed strategies here too, especially since the paths out of equilibrium at least at first lead away 
from pure strategies (or homogeneous populations) and into mixtures of strategies. While Theo-
rem 5 shows that there is also no mixed ESS, Theorems 7 and 8 do not yet exclude the possibility 
that there is a mixture of strategies that is robust against indirect invasions. In this subsection we 
therefore give the equivalents of those theorems for finite mixtures. Here we will directly focus 
on repeated prisoner’s dilemmas rather than repeated games in general. This will keep notation 
simpler, it hopefully helps the intuition, and still captures the essentials. Also, � (D,D) will 
be used to denote (1 − δ)

∑∞
t=0 δt−1π (D,D) = π (D,D), which is the normalized discounted 

payoff of AllD against AllD.

Theorem 10. Let P be a finite mixture of strategies in the repeated prisoner’s dilemma. If 
� (P,P ) > � (D,D) then P is not RAII.

Proof. See Appendix A. �
As with the pure strategy version, the proof in the appendix just constructs one particular way 

out of equilibrium, while there may be many other stepping stone paths.
In order to formulate the mixed strategy counterpart for increasing cooperation, it will be 

helpful to have definitions that allow us to group together pure strategies that, up to a given time t , 
behave identically when interacting with a given pure strategy from the same mix. Let P1, . . . ,
Pn ∈ S be the composing pure strategies of P , and let p1, . . . , pn, with 

∑n
pi = 1, be the 
i=1
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Fig. 4. An example of a mixed equilibrium. Blue stands for cooperation, red for defection. All automata start in the 
leftmost state.

probabilities with which they are played in P . We first define Ei (j)t =
{
Pl | h

Pi,Pl
t = h

Pi,Pj

t

}
, 

which makes it the set of strategies against which the history of Pi at time t is the same as against 
Pj . Since we assume that P is a finite mixture, we know that limt→∞ Ei (j)t = Ei (j), where 

Ei (j) is defined as Ei (j) =
{
Pl | a

Pi,Pl
t = a

Pi,Pj

t ∀ t
}

(see also the proof of Theorem 10).

For any defection by Pi that occurs along a path of interaction between Pi and Pj , we can 
discount Pi ’s possible gains in the future, and compare them to the current period loss of switch-
ing from D to C, which could be used to initiate mutual full cooperation ever after. If strategy 
Pi defects at time t , then its gains and losses are to be averaged over the pure strategies that, up 
to time t , interact with Pi in the same way that Pj does, weighted with their frequencies. The 
proof of Theorem 11 will use a neutral mutant in which all pure strategies in Ei (j)t are replaced 
by versions that allow for a second mutant, in which Pi is replaced by a version that induces 
full mutual cooperation ever after with all of the new versions of the strategies in Ei (j)t . This 
implies that possible gains for Pi in interactions with all pure strategies in Ei (j)t are relevant. If 
the possible gains for Pi of mutual full cooperation outweigh the cost of signaling, then P is not 
RAII.

In order to guarantee that the switch from D to C induces an off equilibrium path, the theorem 
moreover requires that all strategies that up to time t interact with Pj in the same way that Pi

does, play D at time t .

Theorem 11. Let P be a finite mixture of strategies in the repeated prisoner’s dilemma, and let 
there be pure composing strategies Pi and Pj and a time t for which the following hold:

1.
∑

Pl∈Ei(j)t

pl

(
π

(
a

Pi,Pl
t

)
− π

(
C,a

Pi,Pl

t,2

))
<

∑
Pl∈Ei(j)t

pl

∞∑
u=t+1

δu−t
(
π (C,C) − π

(
a

Pi,Pl
u

))
.

2. a
Pk,Pj

t,1 = D for all k for which h
Pk,Pj

t = h
Pi,Pj

t .

Then P is not RAII

Proof. See Appendix A. �
An example might help illustrate different possible indirect invasions into one mixed strategy. 

Suppose we have a mix with equilibrium proportions of P1 and P2 from Fig. 4. In a prisoner’s 
dilemma with π (D,D) = 1, π (C,D) = 0, π (D,C) = 3 and π (C,C) = 2, their normalized 
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payoffs against themselves and each other are � (P1,P1) = 1, � (P1,P2) = 3
1+δ

, � (P2,P1) =
3δ

1+δ
and � (P2,P2) = 2 − δ. For δ > 1

2 , the equilibrium frequency of P1 is 1−δ+δ2

δ+δ2 . This is an 
equilibrium, because, conditional on having D as a first move, P1 is the best a strategy can do 
against either pure strategy, and conditional on having C as a first move, P2 is the best a strategy 
can do against either pure strategy.

The first possible indirect invasion goes with taking i = 1 and j = 1 in Theorem 11. Suppose 
we replace all P1-players with players that play a mutated version of P1. The mutated version 
behaves just like P1, except after all histories that start with k > 0 rounds of (D,D) – like any 
history between two P1 players – but then, from time k + 1 onwards, feature action profiles in 
which the other player plays C. After all of those histories, the mutated P1 plays C. Since those 
histories do not occur between any two strategies in the mix, a new mix, in which P1 is replaced 
with its mutated version, is a neutral mutant of the original mix.

Now a second version of P1 arises, which behaves just like P1, except after all histories that 
start with k rounds of (D,D). After those, the second mutated version of P1 plays C. When 
matched with each other, the first and the second mutated versions of P1 cooperate forever after 
round k + 1. The second mutated version still behaves the same against P2 as P1 did, and as its 
first mutated version did. When interacting with the first mutated version of P1, it gets higher 
discounted payoffs than P1 or the first mutated version of P1 did, provided that getting 2 instead 
of 1 forever after is worth getting 0 instead of 1 in round k + 1. The δ for which that starts being 
the case is 1

2 , and that implies that, considering P1 interacting with P1, this equilibrium is not 
robust against these particular indirect invasions for all t = k + 1 > 1, and δ > 1

2 .
Between P2 and P2 the situation is similar, with indirect invasions that are possible for all 

t > 1 as soon as δ > 1
2 . Also between P1 and P2 increases in cooperation are possible. If we take 

i = 1 and j = 2, then a first mutant version of P2 could behave just like P2, except after histories 
that start with 2k > 1 rounds alternating between (C,D) and (D,C) – like any history between 
a P1 and a P2 player, from the perspective of the P2 player – but then, from time 2k +1 onwards, 
feature the action profile (C,C). For all of those histories, the mutated P2 plays C. Since those 
histories do not occur between any two strategies in the mix, a new mix, in which P2 is replaced 
with its mutated version, is a neutral mutant of the original mix.

Now a mutated version of P1 arises, which behaves just like P1, except after all histories that 
start with 2k > 1 rounds alternating between (D,C) and (C,D). For those, the mutated version 
of P1 plays C. When matched with each other, the mutated versions of P1 and P2 cooperate 
forever after round 2k. The mutated version of P1 still behaves the same against P1 as P1 did. 
When interacting with the mutated version of P2, it gets higher discounted payoffs than P2 did, 
provided that getting 2 forever after – instead of getting 3 in odd rounds, and 0 in even ones – is 
worth getting 2 instead of 3 in round 2k + 1. The δ for which that starts being the case is 1

2 , and 
that implies that, considering P1 interacting with P2, this equilibrium is not robust against these 
particular indirect invasions for all odd t > 2, and δ > 1

2 . For i = 2 and j = 1, similar indirect 
invasions are possible for all even t > 1, and δ > 1

2 .
These indirect invasions are not exactly the same as the ones used in the proof of Theorem 11; 

they are slightly simpler. They do however give the same threshold δ’s for which these indirect 
invasions are possible, because the subsequent two mutants induce full mutual cooperation. With 
more exploitable first mutants, which switch to unconditional cooperation after the handshake, 
one can also construct indirect invasions for lower δ’s. With such indirect invasions, the mutant 
Pi and Pj might also end up cooperating less with each other than the original Pi and Pj did, and 
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such indirect invasions can therefore not categorically be classified as increasing or decreasing 
cooperation.

3.1.1. Behavior strategies and finite mixtures
The literature on repeated games regularly works with the convenient and intuitive notion of 

behavior strategies. Our results can also be phrased in terms of behavior strategies, but there are a 
few reasons why in this context using mixed strategies might allow for more concise formulation 
of the results. One reason is that our results are about finite mixtures. That implies that if we were 
to rephrase the current results in terms of behavior strategies, we would have to restrict attention 
to those that only mix at a finite number of information sets. This would make the proofs a bit 
more roundabout than they currently are. To link up with stability results concerning RAII and 
ES-sets, we would moreover need to include auxiliary results, showing that a mixed strategy that 
is RAII corresponds to a behavior strategy that is RAII, and vice versa, and that a mixed strategy 
that is ESS corresponds with a behavior strategy that is ESS, but not vice versa.4

The reason why Selten (1983) uses behavioral strategies is that it helps get rid of spurious 
duplications in the description of strategic possibilities by mixed strategies, which create spurious 
neutral mutants. In our setting we do not have nature making chance moves, and we are less 
focused on stage games with mixed equilibria. That implies that it might require some ingenuity 
to construct examples where using behavior strategies actually does get rid of spurious mutants in 
our setting too. But even if such examples exist, it remains the case that our results are negative, 
and show that strategies are not RAII. While doing away with “spurious neutral mutants” can 
turn a non-ESS in an ESS – which is why Selten uses behavioral strategies – it cannot turn a 
strategy that is not RAII into a strategy that is RAII, as the neutral mutants that make it not 
RAII are clearly not spurious, because they open doors for other mutants (see also Selten, 1983, 
pp. 294–297).

Almost all of the literature focuses on pure strategies (see for instance Axelrod and Hamilton, 
1981; Selten and Hammerstein, 1984; Boyd and Lorberbaum, 1987; Bendor and Swistak, 1995;
Fudenberg and Maskin, 1990; Binmore and Samuelson, 1992; Cooper, 1996).5 Finite mixtures 
therefore are a step in the right direction. It would of course be interesting to know if similar 
results also hold for infinite mixtures, as the proofs for finite mixtures do not seem to allow for 
straightforward extension to infinite mixtures.

4. Indirect invasions in the simulations

In Section 3 it was already mentioned that the proofs only provide two stepping stone paths out 
of equilibrium; one with increasing and one with decreasing cooperation. This is enough to show 
that an equilibrium is not RAII. Still, since there is an uncountably infinite number of strategies,6

one could imagine that the existence of only one or two stepping stone paths out would not 
necessarily make an equilibrium very unstable in reasonable dynamics. We do however know 
that the paths constructed in the proofs are not the only paths out, and that there are in fact many 

4 It might have been good had such results be included in van Veelen, 2012, because for some applications to finite 
extensive form games, there is a real difference.

5 Again, with the exception of Sections 8 and 9 in Binmore and Samuelson (1992).
6 Since a strategy S : H → A is a function that maps the set of histories H on the action space A, the set of strategies 

S is at least as large as the power set of H if the number of actions in A is larger than 1. Since H is countably infinite, 
we know from Cantor’s Theorem that the power set of H is uncountably infinite.
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quite similar ways out of equilibrium. Unfortunately, with an uncountably infinite strategy space, 
there is no way to determine how many paths out would be enough to be able to say with some 
confidence that a mutation process will actually find them. More precisely, even if the number 
of paths out of equilibrium would also be uncountably infinite for every equilibrium, a specific 
mutation process could still imply that when the population is at an equilibrium, the mutations 
needed for an indirect invasion occur with probability 0, while on the other hand, even if there 
would be only one path out of each equilibrium, a specific mutation process could imply that it 
occurs with positive probability. What matters therefore is the combination of a mutation process 
and the possible indirect invasions. (A similar point in a different context was made by Bergin 
and Lipman, 1996.) In order to be able to say if these indirect invasions do indeed drive the 
evolutionary dynamics in relevant, interesting settings, we will therefore have to combine the 
game with a priori reasonable mutation processes and look at the dynamics. For our simulations 
we therefore start out with a natural choice for a mutation process, given that we do not want to 
exclude any part of the strategy space beforehand by construction of the mutation process.

4.1. Finite state automata

Existing simulations typically use a fixed, finite strategy space.7 That however is exactly what 
we want to avoid, given that it is the richness of the strategy space that allows for the existence 
of stepping stone paths out of every equilibrium. Therefore we chose to represent strategies as 
finite state automata,8 and combined it with a mutation mechanism that guarantees that every 
finite automaton can be reached by a finite sequence of mutations from any other automaton. In 
our setup, mutations add new strategies all the time, while selection may remove strategies from 
the population.

A finite state automaton is a list of states, and for every state it prescribes what the automaton 
plays when in that state, to which state it goes if the opponent plays cooperate, and to which state 
it goes if the opponent plays defect. More formally, a finite automaton, or a Moore machine, 
can then be represented by a tuple {{1, . . . ,NS} , λS,μS}, where NS is the number of states, 
λS : {1, . . . ,NS} → {C,D} gives the output in every state, and μS : {1, . . . ,NS} × {C,D} →
{1, . . . ,NS} gives the transitions (see for instance Rubinstein, 1986; Abreu and Rubinstein, 1988;
Kalai and Stanford, 1988).

The previous sections consider an unrestricted strategy space. Because not all strategies are 
finite state automata, it is worth pointing out that running simulations with finite state automata 

7 To our knowledge, Lindgren and Nordahl (1994) is the only exception. Although their space is potentially infinite, 
what they are able to say based on theory is restricted to automata of size one and two. The (small) part of the paper 
that deals with a potentially infinite space is mostly speculative. Also they study spatial structure, and not the setting of a 
well-mixed population. The strategy spaces in Ho (1996) and Miller (1996) are finite, but extremely large. An interesting 
feature of their reproduction stage is that it is sexual, in the sense that the making of every offspring involves two parents. 
This allows for recombination. Therefore they also have a mutation procedure that implies that it depends on the current 
population which automata are likely to mutate into the population. Linster (1992, 1994) restricts attention to automata 
with two states. Hirshleifer and Coll (1988), Young and Foster (1991), and Imhof et al. (2005) consider three strategies; 
AllD, AllC and Tit-for-Tat.

8 The program also has the options to represent strategies with regular expressions, or to let Turing machines evolve. 
The set of regular expressions is equivalent to the set of finite automata, but because they are represented differently, the 
likelihoods of mutations also are different; a mutation that is a single step in one representation requires a series of steps 
in the other and vice versa. This is discussed in more detail on www.evolutionandgames.com, which also has the 
simulation program on it. The set of Turing machines is a richer set of strategies that embraces the set of finite automata.

http://www.evolutionandgames.com
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still leaves us with a relatively rich set of strategies. We would like to do that by showing that 
when we define a relatively natural metric on the (unrestricted) strategy set S , the set of finite 
state automata is dense in S .

We would like to have a distance that reflects how differently, or similarly, two strategies play. 
We therefore will use a function that, for any given history, returns 0 if the two strategies play 
the same action, and 1 if they play a different one. Let f : H × S × S →{0,1} be defined by

f (ht , S,T ) =
{

0 if S (ht ) = T (ht )

1 if S (ht ) �= T (ht )

We assume that the action space A is finite, and that it has k elements, a1, . . . , ak . The number of 
possible histories in Ht – the set of all histories at time t – is k2t−2. For any given t , we will give 
all histories equal weights. Because a history at time t is reached at all with probability δt−1, the 
set Ht as a whole is weighted with that probability. Therefore we define the distance between S
and T , both S, T ∈ S , as follows:

d (S,T ) = (1 − δ)

∞∑
t=1

ρt−1
∑

ht∈Ht

|f (ht , S,T )| with ρ = δ

k2
and δ ∈ (0,1) .

With this definition, d (S,S) = 0, and, if we take the example of the repeated prisoner’s dilemma, 
d (AllC,AllD) = 1, which implies that both are independent of δ. Distances between many pairs 
of strategies however will depend on δ.

If we take for St ⊂ S the set of strategies in S that all play a1 for all histories hu with u > t , 

then it is a finite set; it has k
(∑t

v=1 k2t−2
)
= k

(
k2t −1
k2−1

)
elements. The set 

∞⋃
t=1

St is therefore countable, 

but it is easy to see that it is dense in S . If we now restrict attention to the repeated prisoner’s 
dilemma, and consider the set of all finite state automata, then this set is also countable, and 
dense in S .

In the simulations, four kinds of mutations can occur. Mutations can add a state, delete a state, 
change the action that is played when in a state, or change which state to go to, depending on the 
action of the other player. If a state is added, one transition is randomly selected to then become 
a transition to this state. If a state is deleted, then all transitions towards that state are one by 
one randomly reassigned to another state, where each state is equally likely to be chosen. The 
probabilities of the four different types of mutations are of the same order, and chosen such that 
the average size of the automata does not explode, as it would if we choose the probability of 
adding a state to be too large compared to the probability of deleting a state. Besides the effect 
on the average size of automata, simulation results are not sensitive to even considerable changes 
in these probabilities.

The most important property of these four types of mutations together is that now every finite 
state automaton can be reached from every other finite state automaton in a finite sequence of 
mutations. That implies that we can always get arbitrarily close to any strategy through a finite 
sequence of mutations. This we think is an attractive property of a mutation scheme, given that 
we want to avoid excluding specific parts of the strategy space a priori.

In the simulations we will also include infinitely repeated games without discounting. Since 
the simulations are restricted to finite state automata, the simple limit of means is always well-
defined there:

�(S,T ) = lim
τ→∞

1

τ

τ∑
t=1

π
(
a

S,T
t

)
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Fig. 5. Part of a typical run, with δ = 0.75, and game payoffs P = 1, R = 3, S = 0 and T = 4. Blue letters indicate where 
relevant neutral mutants occur, green letters indicate advantageous mutants entering. The sequence of strategies is given 
in Fig. 6, their payoffs are given in Fig. 7.

4.2. The simulations

The basics of the simulations are simple. There are N individuals, and every generation they 
are randomly matched in pairs to play a repeated prisoner’s dilemma. N is even, so every individ-
ual plays exactly once. With a probability of breakdown smaller than 1, the number of repetitions 
is a random variable. This, and the randomness of the matching, creates noise in the payoffs of 
individuals. These payoffs are used in the update step. In the update step, all individuals in the 
new generation are drawn one by one, and independently, from a distribution where the proba-
bility of being the offspring of individual j from the old generation is proportional to the payoff 
of j . After the new generation has been drawn, any individual mutates with a small probability. 
This completes the cycle for a generation. The cycle is repeated a large number of times.9

Fig. 5 depicts average payoffs in a short piece of a representative simulation run. The shifts in 
average payoffs suggest that the population might be walking from one equilibrium to the other. 
If we look at the strategies at different moments in time, this is exactly what we find. Fig. 6
depicts the strategies that enter the population at the points indicated by letters in Fig. 5. Fig. 7
gives the relevant payoffs in the payoff matrix between those strategies, in the order in which 
they appear in the simulation. Most of the payoffs between strategies that never live together in 
this part of the simulation run are left out, and the discount factor used for computations is the 
same as in the simulation.

In this part of the run, the population visits four equilibria. In the beginning, all individuals 
play AllD. The first indirect invasion (a neutral mutant followed by a mutant with a selective 
advantage) brings the population to a mixture of the two mutants. This mixture would be an 
equilibrium if the strategy space were to be restricted to these two strategies, but not for the un-
restricted strategy space; the mixture is outperformed by a third mutant that appears at marker C. 
This mutant dominates the mutant that enters at marker B, and once that strategy has disappeared, 
it dominates the mutant that entered at A, and goes to fixation. This establishes full cooperation. 
After this we get an indirect invasion back to AllD, and finally we get an indirect invasion that 
establishes a strategy that, when played against itself, starts with defection, and then plays coop-
erate ever after.

9 A process in which the update step uses the payoffs to draw an entire new generation is called a Wright–Fisher 
process. The best known alternative is a Moran process, which only replaces one individual every cycle. Our program 
does have the option to run as a Moran process, but because the only difference lies in the speed of selection we report 
results that use the Wright–Fisher process. The online material at www.evolutionandgames.com contains a more 
detailed description.

http://www.evolutionandgames.com
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Fig. 6. The sequence of indirect invasions.

Besides looking at whether equilibria are indeed left through indirect invasions (which we 
will return to in the next subsection) we can also have a glimpse at the richness of the equilibria 
that the population visits. Fig. 8 only depicts the five strategies that are most frequently observed 
over the entire run, but the list is much longer (see also Fig 1. in van Veelen et al., 2012).

Since the same strategy can be produced by a variety of finite state automata, all equivalent 
finite state automata are lumped together with one equivalent strategy with a minimum number of 
states, which is depicted in the figure. For minimizing the size of automata we use the Hopcroft 
algorithm (Hopcroft, 1971). The strategy that is used most frequently, and by a large margin, is 
AllD, which can be encoded by any finite state automaton in which the output in any of its states 
is to defect. The simplest version of that has only one state.
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Fig. 7. The relevant payoffs between subsequent invaders at δ = 0.75.

Fig. 8. The top 5 strategies for a run with δ = 0.75, game payoffs P = 1, R = 3, S = 0 and T = 4, and a million 
generations.

Besides All D, there is a large variety of strategies that occur in considerable smaller frequen-
cies, when averaged over the entire run. The second most frequent strategy is a strategy that, 
when it meets a copy of itself, plays cooperate every second round. If its opponent fails to also 
play cooperate in any of these odd rounds, it punishes with defecting forever. It would moreover 
maximally exploit All C.

The third most frequent strategy in this run is a well known one: Tit-for-Tat. The fourth most 
frequent strategy is part of a mixture, almost all of the time that it is there in the population. On 
its own, it is not an equilibrium strategy, but combined with the right counterpart, it constitutes 
an equilibrium mix. The counterparts that it is combined with during the run share the following 
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properties. When they play against a copy of themselves, they only play cooperate once, and 
then defect forever. When the two different automata in the mix meet, then the following path 
unfolds:

D C D D C D D ...

C D C C D C C ...

Both composing pure strategies do poorly against copies of themselves, but they evoke re-
current cooperation in each other, where one cooperates once every three rounds, and the other 
cooperates twice every block of three rounds.

The last strategy in the top 5 performs a handshake of 3 defections when it meets a copy of 
itself. After this handshake, it cooperates forever. A defection in round 4 or higher would make 
this strategy return to its initial state. In the initial state, the cheapest way for its opponent to get 
it back to a cooperative state is to sit through another full handshake.

4.3. Indirect invasions matter

The aim of the simulations is to find out if the presence, or absence, of indirect invasions 
indeed makes a substantial difference for evolutionary dynamics in repeated games. Therefore 
we ran simulations with different population sizes in order to see if, and how, equilibria are 
left. For the repeated prisoner’s dilemma we first compared the number of times equilibria were 
left by indirect invasions to the number of times equilibria were left at all. The analysis of the 
output, however, is not that straightforward. The way in which the data are processed and anal-
ysed are described in some detail in van Veelen and García (2010) and in online material at 
www.evolutionandgames.com/repeatedgames.10 Here we will focus mostly on the 
results.

For a range of population sizes we generated simulation runs. In order to count indirect inva-
sions as well as other ways in which equilibria are left, we need to choose which starting points 
to consider. As starting points of paths out of equilibrium, we took all equilibria of the repeated 
game that the simulation visited, and that were not themselves reached by a neutral invasion. The 
reason why we did not simply consider all equilibria visited by the simulation run is that it is very 
well possible that an equilibrium is first invaded by a neutral mutants that still is an equilibrium 
itself. In fact, equilibria typically are followed by a sequence of neutral mutants that have the 
same self-play – which, for as long as they are equilibria, is the equilibrium path. This implies 
that if we find a sequence of neutral mutants that themselves are equilibria, which is followed, 
first, by a neutral invasion to a state that is not an equilibrium, and then by an advantageous 
mutant, then it is reasonable to count the whole sequence as one single indirect invasion. It is for 
sure an indirect invasion starting from the last equilibrium, and also one when we start from the 
first one, and from all equilibria in between, but counting it as just one single indirect invasion 
is more than reasonable. All other sequences out of equilibrium – zero or more neutral mutants 
followed by the entry of a mutant with a disadvantage – are qualified as “other invasions”.

10 This includes a routine that finds the payoff of the best response against any pure strategy. If the payoff of S against 
itself equals this payoff, then S is a Nash equilibrium. This is a useful device, since the infinity of the strategy space does 
not allow us to determine whether or not S is a symmetric Nash equilibrium by simply comparing the payoff of S against 
itself to the payoff of all other strategies against S one after the other.

http://www.evolutionandgames.com/repeatedgames
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Fig. 9. The share of indirect invasions out of pure equilibria goes to 1 as the population size increases. The continuation 
probability is 0.75, and the game has payoffs P = 1, R = 3, S = 0 and T = 4.

If we restrict attention to pure equilibria, then the data indicate that the share of indirect 
invasions goes to 1 if the population size grows large. As a matter of fact, all equilibria are left 
through indirect invasions already for a population of 1024 (see Fig. 9).11

We would also like to compare the dynamic behavior in a repeated prisoner’s dilemma, which 
does not have equilibria that are RAII, to a repeated game that does have equilibria that are RAII. 
Therefore we replace the prisoner’s dilemma as a stage game with a coordination game. If we 
do, then we preserve everything, including the richness of the strategy space. The only difference 
is that now we do get equilibria that are RAII (but not ESS). That means that what sets these 
repeated games apart is the existence or nonexistence of the possibility for indirect invasions. We 
therefore replace the prisoner’s dilemma[

3 0
4 1

]
with the following stage game:[

2 0
0 2

]
In Fig. 10 we compare the number of transitions in simulations for the repeated prisoner’s 

dilemma to the number of transitions in the repeated coordination game. What counts as a tran-
sition, is if the population goes to a state where the self-play is different (all strategies with the 
same self-play are only neutral mutants of each other). While the number of transitions decreases 
for both games if the population increases, the number of transitions in the repeated coordination 
game divided by the number of transitions in the repeated prisoner’s dilemma goes to 0 rather 
rapidly. Transitions in the repeated coordination game are already not observed anymore for 

11 For combinations of two or more finite automata it is harder to get such clean data. Making an automated procedure 
to determine whether or not mixtures of automata are equilibria is far more complicated than constructing one for pure 
strategies and thereby well beyond the scope of this paper. For not too large population sizes, mixed population states are 
moreover left relatively easily by one of the composing strategies going extinct, leaving the population in a disequilibrium 
state, which then gets invaded, either by the strategy that went extinct just before, or by another strategy.
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Fig. 10. The number of transitions leaving pure equilibria in a repeated prisoner’s dilemma and in a repeated coordination 
game for different population sizes. Note that in the repeated coordination game, all RAII equilibria are pure, and all 
mixed equilibria are not NSS.

population size 128, while the number of indirect invasions is still quite sizeable at 1024 in the 
repeated prisoner’s dilemma. One can therefore conclude that a population in the latter remains 
infinitely more mobile than the former.

The number of transitions away from pure equilibria in the repeated prisoner’s dilemma is de-
creasing only very slightly. This fits what we expect. The fixation probability of neutral mutants 
is expected to determine the rate at which indirect invasions occur in large populations; once 
neutral mutants have opened the door for advantageous ones, invasions typically happen rela-
tively quickly. The fixation probability of a neutral mutant is 1

N
, where N is the population size 

(see Theorem 1.1 in Durrett, 2008). At the same time the mutation probability per individual is 
constant, so the expected number of neutral mutants entering per generation is proportional to N . 
If we can assume that every neutral mutant has either becomes fixed or gone extinct before the 
other neutral mutant appears, then the expected number of transitions by neutral mutants should 
be constant, as the decrease in fixation probability is compensated by an increase in numbers of 
neutral mutants entering. But with an increase in population size, fixation times also increase, 
and the larger the population, the more neutral mutants enter in a population that has not yet 
gone to fixation. This interference implies that we will be observing slightly less fixation events 
for larger populations.

The traffic between equilibria for the repeated prisoner’s dilemma, where no equilibrium is 
RAII, therefore decreases slightly, but remains of the same order of magnitude, if the population 
size increases. With the repeated coordination game the transitions between equilibria quickly 
become orders of magnitude less frequent. It is comparisons between transitions like the latter 
ones that are central to the concepts of stochastically stable states (Young, 1993), or long-run 
equilibria (Kandori et al., 1993). The dynamics for the repeated prisoner’s dilemma therefore 
typically feature orders of magnitude more transitions than the dynamics studied in the literature 
on the evolution of conventions (see also Young, 1998; Ellison, 2000).

5. Discussion

Both the theorems and the simulations in this paper indicate that there is a fundamental in-
stability in repeated games, provided that the stage game is characterized by a conflict between 
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individual and collective interests. The prime example is the repeated prisoner’s dilemma. The-
orems 10 and 11 show that with sufficiently large continuation probability δ, there is no finite 
mixture of strategies that is robust against indirect invasions in the repeated prisoner’s dilemma. 
In other words: every equilibrium can be upset, either by a mutant, if the strategy is not an NSS, 
or by a succession of mutants, if the strategy is an NSS. The simulations show that under very 
reasonable mutation schemes these stepping stone paths out of equilibrium not only exist, but 
evolution also finds them.

The richness of the strategy space therefore excludes that there is an equilibrium refinement, 
or a static stability concept, that, by only looking at the game itself, singles out an equilibrium that 
will be significantly more stable than all others in a population with random matching, mutation 
and selection. One important conclusion is that what we can expect to evolve will essentially 
depend – besides on δ – on the structure of the mutation probabilities, or, more precisely, on 
which mutations are relatively likely. The proofs of the results show that there are different 
possible stepping stone paths out of equilibrium; paths with increasing levels of cooperation, 
and paths with decreasing levels of cooperation. Whether we can expect cooperation to in- or 
decrease therefore also depends on the probabilities with which the mutations necessary for the 
different paths occur.

If we allow ourselves to restrict the strategy space, then that offers a possibility to get stability 
results. It is however important to see that restricting the strategy space to, say, a strict subset 
T of S , is in fact a special case of a combination of a starting point (somewhere within T ) and 
an assumption concerning mutation probabilities (they are zero for all mutations from elements 
of T to elements of S\T ). This therefore falls within the message that the starting point and 
mutation probabilities are decisive. The results here however also imply that any stability result 
that is achieved by restricting the strategy space is not robust to relaxations of the restriction on 
the strategy space. If the strategies needed for the indirect invasions are apparently barred by 
exclusion from the strategy space, they nonetheless still exist, and adding them to the strategy 
space (i.e. allowing mutations to them) would render the strategy that was stable within the 
restricted strategy set T unstable.

Simulations show that with a reasonable mutation process, a population that is not too small 
does indeed walk from equilibrium to equilibrium through indirect invasions. Since the infinite 
population model is meant to produce results that help us understand what happens in large, 
but still finite populations, the simulations thereby also emphasize the importance of neutral 
mutants and the need to have a concept that deals with indirect invasions in our theory for infinite 
populations.
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Appendix A. Proofs of theorems

Proof of Proposition 5. Assume that P is a finite mixture of strategies. Let P1, . . . , Pn denote 
the composing pure strategies of P and let p1, . . . , pn with 

∑n
i=1 pi = 1 be the probabilities 

with which they are played in P . It is safe to assume that P is a Nash equilibrium, as being ESS 
implies being a Nash equilibrium.

There can be no more than n2 paths that are followed by combinations of two pure strategies 
from this mixture. There is, however, a (countably) infinite number of possible paths; if k repre-
sents the number of possible actions of each player in the stage game, then there are k2 possible 
action profiles per repetition, and there is an infinite number of repetitions. (Note that a game 
is non-trivial if k > 1.) For every finite mixture of strategies, we can create a new strategy that 
performs exactly as well as the other strategies in the mixture. Take one of the strategies present 
in the mixture, say strategy n, and mutate it into strategy n + 1 by only changing its behavior
for a history that does not occur along any of the at most n2 paths followed by duo’s of strate-
gies from this mixture interacting. Some such changes could turn it into one of the other n − 1
strategies, but there is a (countably) infinite number of possible histories to chose from (see also 
Section 3) and only a finite number of strategies in the mixture, so there always exists one such 
mutant that really is a new strategy. This new strategy does not cause any changes; when paired 
with any of the n strategies both strategies n and n + 1 follow the same paths and also the path 
of n with itself is the same as n + 1 with itself. Hence n + 1 receives exactly the same payoff as 
the other strategies from the mixture and we have a mutant that is not driven out. Therefore the 
finite mixture is not evolutionarily stable. �
Proof of Theorem 10. Assume that P is an equilibrium (if it is not, it is trivially not robust 
against indirect invasions). Let P1, . . . , Pn ∈ S be the composing pure strategies of P and let 
p1, . . . , pn, 

∑n
i=1 pi = 1, be the probabilities with which they are played in P . If � (P,P ) >

� (D,D), then obviously not all combinations of Pi and Pj , with 1 ≤ i, j ≤ n, can always play 
D when they interact. So there must be at least one i and one j , with 1 ≤ i, j ≤ n, and a time τ
for which a

Pi,Pj
τ �= (D,D). First it is clear that there cannot only be a finite number of times that 

C is played in the mixture. Suppose that were true, and there is a time τ and an i and a j , with 
1 ≤ i, j ≤ n, for which a

Pi,Pj
τ �= (D,D) and a

Pi,Pj

t = (D,D) for all i and j and t > τ , then the 

mixture is not an equilibrium; without restricting generality we can assume that Pi

(
h

Pi,Pj
τ

)
= C

and then a strategy that equals Pi for all histories at times t < τ and plays D for all histories 
at times t ≥ τ earns a higher payoff than Pi and therefore also higher than all other composing 
strategies. Hence C must be played infinitely many times in the mixed population. Since there is 
only a finite number of combinations 

(
Pi,Pj

)
, it also follows that there is at least one in which 

Pi plays C an infinite number of times.
Let 

(
Pi,Pj

)
be a combination of strategies in which Pi plays C infinitely often. Let E (i, j)

be the set of combinations of strategies (Pk,Pl) for which aPk,Pl
t = a

Pi,Pj

t ∀ t , that is, strategies 
Pk and Pl that follow the same path as when Pi interacts with Pj . Given that P is a finite mixture, 
there is a finite time τ ′ which is sufficiently large to determine whether or not (Pk,Pl) ∈ E (i, j), 
that is, there is a τ ′ such that if aPk,Pl

t = a
Pi,Pj

t ∀ t ≤ τ ′ then aPk,Pl
t = a

Pi,Pj

t ∀ t . Let τ ′′ > τ ′ be 

the first time t after τ ′ at which a
Pi,Pj

t,1 = C.
Let Ei (j) be the set of strategies Pl such that (Pi,Pl) ∈ E (i, j). For all Pl ∈ Ei (j) one can 

define Ql as the pure strategy that equals Pl for all histories, except for those in the set
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Ĥ =
{
ht | t > τ ′′, au = a

Pj ,Pi
u for u ≤ τ ′ and aτ ′′,2 = D

}
.

These histories only occur off all equilibrium paths, since the history up to and including τ ′
implies that this history does not occur along an equilibrium path outside E (i, j), as experienced 
by j , while the remainder implies that it does not occur along equilibrium paths in E (i, j). For 

the histories ht ∈ Ĥ we take Ql (ht ) = a
Pj ,Pi

t,1 = Pl

(
h

Pj ,Pi

t

)
. Obviously, the path of Ql against 

Pm is the same as the path of Pl against Pm for all m, 1 ≤ m ≤ n and all Pl ∈ Ei (j). Define Q
as the strategy that plays Ql with probability pl for Pl ∈ Ei (j) and Pl with probability pl for all 
Pl /∈ Ei (j). For this strategy we have � (Q,P ) = � (P,P ) = � (Q,Q) = � (P,Q).

Let R be the strategy that equals Pi , except for h
Pi,Pj

τ ′′ , for which we take R
(
h

Pi,Pj

τ ′′
)

= D and 
except for histories that are elements of the set

H̃ =
{
ht | t > τ ′′, au = a

Pi,Pj
u for u ≤ τ ′ and aτ ′′,1 = D

}
,

for which we take R (ht ) = a
Pi,Pj

t,1 = Pi

(
h

Pi,Pj

t

)
, ht ∈ H̃ .

Because P is an equilibrium, it must be that � (R,P ) ≤ � (P,P ). It is also clear that 
� (R,Q) > � (Q,Q) = � (P,Q), because R improves itself against strategies Ql ∈ Ei (j) at 
time τ ′′ without being punished and remains unchanged against strategies that are not in Ei (j). 
As � (R,Q) > � (Q,Q), while � (P,P ) = � (Q,P ) and � (P,Q) = � (Q,Q), P is not ro-
bust against indirect invasions.

Note that if Ql = Pl ∀ Pl ∈ Ei (j), that would contradict P being an equilibrium, because if 
P = Q then � (R,Q) > � (Q,Q) would contradict that � (R,P ) ≤ � (P,P ). �
Proof of Theorem 11. Assume that P is an equilibrium (if it is not, it is trivially not robust 
against indirect invasions). Take i, j and τ such that δij,τ = mink,l,t δkl,t . For all Pl ∈ Ei (j)τ
one can define Ql as the pure strategy that equals Pl for all histories, except for those that are 
elements of the set

Ĥ =
{
ht | t > τ, au = a

Pj ,Pi
u for u < τ, au,2 = C,u ≥ τ

}
.

These histories only occur off all equilibrium paths, if indeed δij,τ < 1. For those histories ht ∈ Ĥ

we take Ql (ht ) = C. Obviously, the path of Ql against Pm is the same as the path of Pl against 
Pm for all m, 1 ≤ m ≤ n and all Pl ∈ Ei (j)τ . Define Q as the strategy that plays Ql with 
probability pl for Pl ∈ Ei (j)τ and Pl with probability pl for all Pl /∈ Ei (j). Consequently the 
corresponding payoffs are also equal; � (Q,P ) = � (P,P ) = � (Q,Q) = � (P,Q).

Now let R be the strategy that equals Pi , except for the history h
Pi,Pj
τ , for which we choose 

R
(
h

Pi,Pj
τ

)
= C and except for the histories that are elements of the set

H̃ =
{
ht | t > τ, au = a

Pi,Pj
u for u < τ , aτ,1 = C and au,2 = C,u > τ

}
,

for which we also take R (ht ) = C, ht ∈ H̃ .
Because P is an equilibrium, it must be that � (R,P ) ≤ � (P,P ). It is also clear that 

� (R,Q) > � (Q,Q) = � (P,Q), because R improves itself against strategies Ql ∈ Ei (j) at 
time τ ′′ without being punished and remains unchanged against strategies that are not in Ei (j)τ . 
As � (R,Q) > � (Q,Q), while � (P,P ) = � (Q,P ) and � (P,Q) = � (Q,Q), P is not ro-
bust against indirect invasions.
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Note again that if Ql = Pl ∀ Pl ∈ Ei (j)τ , that would contradict P being an equilibrium, 
because if P = Q then � (R,Q) > � (Q,Q) would contradict that � (R,P ) ≤ � (P,P ). �
References

Abreu, D., Rubinstein, A., 1988. The structure of Nash equilibrium in repeated games with finite automata. Economet-
rica 56, 1259–1281.

Axelrod, R., 1997. The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration. Princeton 
University Press.

Axelrod, R., Hamilton, W.D., 1981. The evolution of cooperation. Science 211, 1390–1396.
Balkenborg, D., Schlag, K.H., 2001. Evolutionarily stable sets. Int. J. Game Theory 29, 571–595.
Bendor, J., Swistak, P., 1995. Types of evolutionary stability and the problem of cooperation. Proc. Natl. Acad. Sci. 

USA 92, 3596–3600.
Bendor, J., Swistak, P., 1997. The evolutionary stability of cooperation. Am. Polit. Sci. Rev. 91, 290–307.
Bendor, J., Swistak, P., 1998. Evolutionary equilibria: characterization theorems and their implications. Theory Decis. 45, 

99–159.
Bergin, J., Lipman, B.L., 1996. Evolution with state-dependent mutations. Econometrica 64, 943–956.
Binmore, K.G., Samuelson, L., 1992. Evolutionary stability in repeated games played by finite automata. J. Econ. The-

ory 57, 278–305.
Bomze, I.M., Weibull, J.W., 1995. Does neutral stability imply Lyapunov stability? Games Econ. Behav. 11, 173–192.
Boyd, R., Lorberbaum, J.P., 1987. No pure strategy is evolutionary stable in the iterated prisoner’s dilemma game. 

Nature 327, 58–59.
Cooper, D.J., 1996. Supergames played by finite automata with finite costs of complexity in an evolutionary setting. 

J. Econ. Theory 68, 266–275.
Cressman, R., 1996. Evolutionary stability in the finitely repeated prisoner’s dilemma. J. Econ. Theory 68, 234–248.
Durrett, R., 2008. Probability Models for DNA Sequence Evolution. Probability and Its Applications, 2nd edition. 

Springer, New York.
Ellison, G., 2000. Basins of attraction, long-run stochastic stability, and the speed of step-by-step evolution. Rev. Econ. 

Stud. 67 (1), 17–45.
Farrell, J., Ware, R., 1989. Evolutionary stability in the repeated prisoner’s dilemma. Theor. Popul. Biol. 36, 161–166.
Fudenberg, D., Maskin, E., 1990. Evolution and cooperation in noisy repeated games. Am. Econ. Rev. 80, 274–279.
Hirshleifer, J., Coll, J., 1988. What strategies can support the evolutionary emergence of cooperation? J. Confl. Reso-

lut. 32, 367–398.
Ho, T.H., 1996. Finite automata play repeated prisoner’s dilemma with information processing costs. J. Econ. Dyn. 

Control 20, 173–207.
Hopcroft, J., 1971. An n log n algorithm for minimizing states in a finite automaton. In: Theory of Machines and Com-

putations, Proc. Internat. Sympos.. Technion, Haifa, 1971. Academic Press, New York, pp. 189–196.
Imhof, L.A., Fudenberg, D., Nowak, M.A., 2005. Evolutionary cycles of cooperation and defection. Proc. Natl. Acad. 

Sci. USA 102, 10797–10800.
Kalai, E., Stanford, W., 1988. Finite rationality and interpersonal complexity in repeated games. Econometrica 56, 

397–410.
Kandori, M., Mailath, G.J., Rob, R., 1993. Learning, mutation, and long run equilibria in games. Econometrica 61, 

29–56.
Kim, Y.G., 1994. Evolutionarily stable strategies in the repeated prisoner’s dilemma. Math. Soc. Sci. 28, 167–197.
Lindgren, K., Nordahl, M.G., 1994. Evolutionary dynamics of spatial games. Physica D 75, 292–309.
Linster, B.G., 1992. Evolutionary stability in the infinitely repeated prisoners’ dilemma played by two-state Moore ma-

chines. South. Econ. J. 58, 880–903.
Linster, B.G., 1994. Stochastic evolutionary dynamics in the repeated prisoners’ dilemma. Econ. Inq. 32, 342–357.
May, R.M., 1987. More evolution of cooperation. Nature 327, 15–17.
Maynard Smith, J., 1982. Evolution and the Theory of Games. Cambridge University Press.
Maynard Smith, J., Price, G.R., 1973. The logic of animal conflict. Nature 246, 15–18.
Miller, J., 1996. The coevolution of automata in the repeated prisoner’s dilemma. J. Econ. Behav. Organ. 29, 87–112.
Morris, S., Rob, R., Shin, H.S., 1995. p-Dominance and belief potential. Econometrica 63 (1), 145–157.
Nowak, M.A., 2006. Evolutionary Dynamics. Harvard University Press, Cambridge, MA.
Nowak, M.A., Sigmund, K., 1990. The evolution of stochastic strategies in the prisoner’s dilemma. Acta Appl. Math. 20, 

247–265.

http://refhub.elsevier.com/S0022-0531(15)00201-X/bib61627265753A65636F6E6F6D6574726963613A31393838s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib61627265753A65636F6E6F6D6574726963613A31393838s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6178656C726F643A31393937s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6178656C726F643A31393937s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6178656C726F643A536369656E63653A31393831s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib62616C6B656E626F72673A696A67743A32303031s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib62656E646F723A504E41533A31393935s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib62656E646F723A504E41533A31393935s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib62656E646F723A617073723A31393937s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib62656E646F723A74643A31393938s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib62656E646F723A74643A31393938s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib62657267696E3A65636F6E6F6D6574726963613A31393936s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib62696E6D6F72653A6A65743A31393932s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib62696E6D6F72653A6A65743A31393932s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib626F6D7A653A6765623A31393935s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib626F79643A4E61747572653A31393837s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib626F79643A4E61747572653A31393837s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib636F6F7065723A6A65743A31393936s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib636F6F7065723A6A65743A31393936s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib63726573736D616E3A4A45543A31393936s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib647572726574743A626F6F6B3A32303038s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib647572726574743A626F6F6B3A32303038s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib656C6C69736F6E3A7265733A32303030s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib656C6C69736F6E3A7265733A32303030s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib66617272656C6C3A7470623A31393839s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib667564656E626572673A4145523A31393930s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib68697273686C65696665723A6A63723A31393838s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib68697273686C65696665723A6A63723A31393838s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib686F3A6A6564633A31393936s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib686F3A6A6564633A31393936s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib686F7063726F66743A626F6F6B636861707465723A31393731s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib686F7063726F66743A626F6F6B636861707465723A31393731s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib696D686F663A504E41533A32303035s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib696D686F663A504E41533A32303035s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6B616C61693A65636F6E6F6D6574726963613A31393838s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6B616C61693A65636F6E6F6D6574726963613A31393838s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6B616E646F72693A45434F3A31393933s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6B616E646F72693A45434F3A31393933s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6B696D3A6D73733A31393934s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6C696E646772656E3A50443A31393934s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6C696E737465723A73656A3A31393932s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6C696E737465723A73656A3A31393932s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6C696E737465723A65693A31393934s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6D61793A6E617475726538376E76s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6D61796E6172642D736D6974683A626F6F6B3A31393832s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6D61796E6172642D736D6974683A4E61747572653A31393733s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6D696C6C65723A6A65626F3A31393936s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6D6F727269733A65636F6E6F6D6574726963613A31393935s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6E6F77616B3A626F6F6B3A32303036s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6E6F77616B3A41414D3A31393930s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6E6F77616B3A41414D3A31393930s1


J. García, M. van Veelen / Journal of Economic Theory 161 (2016) 161–189 189
Nowak, M.A., Sigmund, K., 1992. Tit for tat in heterogeneous populations. Nature 355, 250–253.
Oyama, D., Sandholm, W.H., Tercieux, O., 2015. Sampling best response dynamics and deterministic equilibrium selec-

tion. Theor. Econ. 10 (1), 243–281.
Robson, A.J., 1990. Efficiency in evolutionary games: Darwin, Nash and the secret handshake. J. Theor. Biol. 144, 

379–396.
Rubinstein, A., 1986. Finite automata play the repeated prisoner’s dilemma. J. Econ. Theory 39, 83–96.
Samuelson, L., Swinkels, J.M., 2003. Evolutionary stability and lexicographic preferences. Games Econ. Behav. 44, 

332–342.
Sandholm, W.H., 2001. Almost global convergence to p-dominant equilibria. Int. J. Game Theory 30, 107–116.
Sandholm, W.H., Staudigl, M., 2015. Large deviations and stochastic stability in the small noise double limit. Theor. 

Econ..
Schlag, K.H., 1993. Dynamic stability in the repeated prisoners’ dilemma played by finite automata. Discussion paper 

B-243.
Selten, R., 1983. Evolutionary stability in extensive two-person games. Math. Soc. Sci. 5, 269–363.
Selten, R., Hammerstein, P., 1984. Gaps in Harley’s argument on evolutionarily stable learning rules and in the logic of 

“tit for tat”. Behav. Brain Sci. 7, 115–116.
Taylor, P.D., Jonker, L., 1978. Evolutionary stable strategies and game dynamics. Math. Biosci. 40, 145–156.
Thomas, B., 1985. On evolutionarily stable sets. J. Math. Biol. 22, 105–115.
Traulsen, A., Claussen, J.C., Hauert, C., 2005. Coevolutionary dynamics: from finite to infinite populations. Phys. Rev. 

Lett. 95, 238701.
Traulsen, A., Nowak, M.A., Pacheco, J.M., 2006. Stochastic dynamics of invasion and fixation. Phys. Rev. E 74, 011909.
van Veelen, M., 2012. Robustness against indirect invasions. Games Econ. Behav. 74, 382–393.
van Veelen, M., García, J., 2010. In and out of equilibrium: evolution of strategies in repeated games with discounting. 

TI working paper 10-037/1.
van Veelen, M., García, J., 2012. In and out of equilibrium II: evolution in repeated games with discounting and com-

plexity costs. TI working paper 12-089/I.
van Veelen, M., García, J., Rand, D.G., Nowak, M.A., 2012. Direct reciprocity in structured populations. Proc. Natl. 

Acad. Sci. USA 109, 9929–9934.
van Veelen, M., Spreij, P., 2009. Evolution in games with a continuous action space. Econ. Theory 39, 355–376.
Volij, O., 2002. In defense of defect. Games Econ. Behav. 39, 309–321.
Weibull, J.W., 1995. Evolutionary Game Theory. MIT Press, Cambridge.
Young, H.P., 1993. The evolution of conventions. Econometrica 61, 57–84.
Young, H.P., 1998. Individual Strategy and Social Structure. Princeton University Press, Princeton.
Young, H.P., Foster, D., 1991. Cooperation in the short and in the long run. Games Econ. Behav. 3, 145–156.

http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6E6F77616B3A4E61747572653A3139393261s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6F79616D613A54453A32303135s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib6F79616D613A54453A32303135s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib526F62736F6E3A4A54423A31393930s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib526F62736F6E3A4A54423A31393930s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib727562696E737465696E3A6A65743A31393836s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib73616D75656C736F6E3A6765623A32303033s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib73616D75656C736F6E3A6765623A32303033s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib73616E64686F6C6D3A696A67743A32303031s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib73616E64686F6C6D3A45543A32303135s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib73616E64686F6C6D3A45543A32303135s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib7363686C61673A77703A31393933s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib7363686C61673A77703A31393933s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib73656C74656E3A6D73733A31393833s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib73656C74656E3A6262733A31393834s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib73656C74656E3A6262733A31393834s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib7461796C6F723A4D423A31393738s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib74686F6D61733A6A6D623A31393835s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib747261756C73656E3A50524C3A32303035s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib747261756C73656E3A50524C3A32303035s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib747261756C73656E3A5052453A3230303662s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib76616E5665656C656E3A6765623A32303132s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib76616E7665656C656E3A54493A32303130s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib76616E7665656C656E3A54493A32303130s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib76616E7665656C656E3A54493A32303132s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib76616E7665656C656E3A54493A32303132s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib76616E7665656C656E3A706E61733A32303132s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib76616E7665656C656E3A706E61733A32303132s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib76616E5665656C656E3A65743A32303039s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib766F6C696A3A6765623A32303032s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib77656962756C6C3A626F6F6B3A31393935s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib796F756E673A65636F6E6F6D6574726963613A31393933s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib796F756E673A626F6F6B3A31393938s1
http://refhub.elsevier.com/S0022-0531(15)00201-X/bib796F756E673A4745423A31393931s1

	In and out of equilibrium I: Evolution of strategies in repeated games with discounting
	1 Introduction
	1.1 Deﬁnitions and results in the literature
	1.2 Other settings

	2 Preliminaries
	2.1 Robustness against indirect invasions
	2.2 Minimal stabilizing frequencies and p-dominance
	2.3 Repeated games

	3 Stepping stones in either direction
	3.1 Mixed strategies
	3.1.1 Behavior strategies and ﬁnite mixtures


	4 Indirect invasions in the simulations
	4.1 Finite state automata
	4.2 The simulations
	4.3 Indirect invasions matter

	5 Discussion
	Acknowledgments
	Appendix A Proofs of theorems
	References


